![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/bNpktk/btr5BNBhL14/UOIrA2LwTNhdKviAjTONXK/img.png)
이번 포스팅에서는 GBM Regressor 안에 Decision Tree(DT)가 어떤 식으로 split하는지 알아보고자 한다. 이미 DT포스팅에서 어떻게 Split 하는지 포스팅을 했다. 그런데 왜 같은 내용을 또 하냐면... DT에서는 split 기준(criterion)공식을 squared_error로 사용한다. 하지만, GBM속 안 DT는 Friedman mse를 사용한다고 한다. 이 차이점 때문에 다시 한번 손으로 직접 구하는 포스팅을 하는 것이다. * 참고로, 기준(criteriion)의 의미는 IG(Information Gain)을 구할때 어떤 방식으로 구할지에 대한 기준이라 보면 된다. 혹시, 기존 DT에서 IG(Information Gain)을 구하는 방식을 모른다면, 한번쯤 보고 오는 것..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/bz5Ei0/btr5pFW5tRQ/evZXIBuZHLAGRK6nkqBUn0/img.jpg)
이번 포스팅은 GBM Regressor가 어떤 방식으로 동작하고, split 하는지 간단하게 손으로 구하는 포스팅이다. GBM의 기본적인 이론을 숙지한 후 보는 것을 추천드린다. https://sims-solve.tistory.com/96 [ML] GBM(Gradient Boosting Machine) - 정리 이번 포스팅에는 직접 GBM(Gradient Boosting Machine)을 살펴보려고 한다. boosting의 개념을 모른다면, 이전 글 ada boost를 보고 오길 바란다. boosting의 의미를 알아야 GBM을 알아가는데 직관적으로 와닿을 sims-solve.tistory.com 일단, GBM의 학습 과정을 간단하게 기술해 보았다. 밑 [그림 1]을 보고 천천히 이해해 보기 바란다. 딱..
- Total
- Today
- Yesterday
- 오류
- 이미지
- 어탠션
- 정리
- 자바
- 도커
- CNN
- DeepLearning
- java
- 뜯어보기
- 티스토리챌린지
- 디텍션
- 욜로
- 오블완
- GIT
- GNN
- 딥러닝
- 깃
- yolov11
- c3k2
- docker
- github
- Tree
- YOLOv8
- YOLO
- V11
- LLM
- 알고리즘
- 초보자
- python
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |