![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/bapwpO/btr5QoPx567/Y9sB6i2FL3kWkipFcLKzSK/img.png)
이전 포스팅에서는 마할라노비스 거리가 무엇인지 알아보았다. 마할라노비스 거리를 모른다면 해당 링크를 참고하여 공부하고 오길 바란다. https://angeloyeo.github.io/2022/09/28/Mahalanobis_distance.html 마할라노비스 거리 - 공돌이의 수학정리노트 angeloyeo.github.io MCD모델에 들어가기 앞서, 기본적으로 몇가지 알고 넘어가야 할 것이 존재한다. 1) 공분산 2개의 확률변수의 상관'관계' 만을 나타내는 값 ( Positive- 양수, Negative- 음수, None- 0 인지 관계만 나타내줌. 강도 X) 관계만 알 수 있는 이유는... X와 Y 두 변수가 있을때, 어느 한쪽의 단위 (e.g.) 몸무게를 Kg 으로 표시하던 걸 g으로 표시하게 되..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/bP8XEI/btr5Rhipcsa/h5RYdHFcYbZnM9asdU5rdk/img.png)
머신러닝중에 이상치 탐지 머신러닝을 찾다보니 MCD( Minimum Covariance Determinent ) 모델을 알게되었다. MCD모델을 공부하여 정리하는 글을 작성해보고자 한다. MCD는 최소 공분산 행렬을 만드는 데이터셋을 구축하고, 해당 데이터 셋의 피쳐들을 고려하여 데이터셋을 정규화시켜 유클리드 거리를 구하게 된다. 즉, 피쳐간 관계(맥락)을 고려 + 유클리드 거리 = 마할노비스 거리 가 되는 것이다. 마할라노비스 거리를 기준으로 이상치라 판단하기 때문에 마할라노비스 거리에 대해 정리해보고자 한다. https://angeloyeo.github.io/2022/09/28/Mahalanobis_distance.html 마할라노비스 거리 - 공돌이의 수학정리노트 angeloyeo.github.io..
- Total
- Today
- Yesterday
- GNN
- 정리
- YOLO
- Tree
- 티스토리챌린지
- 뜯어보기
- LLM
- docker
- 욜로
- python
- DeepLearning
- GIT
- V11
- 알고리즘
- c3k2
- 도커
- 자바
- yolov11
- 오블완
- 딥러닝
- YOLOv8
- 어탠션
- 오류
- github
- 이미지
- 디텍션
- CNN
- java
- 깃
- 초보자
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |